Digital Breast Tomosynthesis Reconstruction using Spatially Weighted Non-convex Regularization
نویسندگان
چکیده
Regularization is an effective strategy for reducing noise in tomographic reconstruction. This paper proposes a spatially weighted non-convex (SWNC) regularization method for digital breast tomosynthesis (DBT) image reconstruction. With a non-convex cost function, this method can suppress noise without blurring microcalcifications (MC) and spiculations of masses. To minimize the non-convex cost function, we apply a majorize-minimize separable quadratic surrogate algorithm (MM-SQS) that is further accelerated by ordered subsets (OS). We applied the new method to a heterogeneous breast phantom and to human subject DBT data, and observed improved image quality in both situations. A quantitative study also showed that the SWNC method can significantly enhance the contrast-to-noise ratio of MCs. By properly selecting its parameters, the SWNC regularizer can preserve the appearance of the mass margins and breast parenchyma.
منابع مشابه
Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization
Digital breast tomosynthesis (DBT) is a rapidly developing imaging modality that gives some tomographic information for breast cancer screening. The effectiveness of standard mammography can be limited by the presence of overlapping structures in the breast. A DBT scan, consisting of a limited number of views covering a limited arc projecting the breast onto a fixed flat-panel detector, involve...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملTotal Variation Regularization in Digital Breast Tomosynthesis: Regularization Parameter Determination based on Small Structures Segmentation Rates
Regularization approaches for the limited-angle reconstruction problem in digital breast tomosynthesis are widelyused. Though, their benefits depend largely upon a suitable regularization parameter estimation. We aim to evaluate the reconstruction quality of precise small contrast features objectively with the help of an automated process. These features were represented by so-called Landolt ri...
متن کاملAdaptive Diffusion Regularization for Enhancement of Microcalcifications in Digital Breast Tomosynthesis (DBT) Reconstruction
Digital breast tomosynthesis (DBT) has been shown to increase mass detection. Detection of microcalcifications in DBT is challenging because of the small, subtle signals to be searched in the large breast volume and the noise in the reconstructed volume. We developed an adaptive diffusion (AD) regularization method that can differentially regularize noise and potential signal regions during rec...
متن کاملEnhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms.
PURPOSE The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). METHODS The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p = 1.0 or the image roughness when p = 2.0. Constraints on the image, such as ...
متن کامل